8 research outputs found

    Conformational Analysis of Neomycin B and Its Derivative

    No full text
    Neomycin B is an aminoglycoside antibiotic, topically used to prevent and treat infections. When ingested, Neomycin cannot be absorbed by the intestine and therefore can be prescribed during liver failure or before GI surgery to keep ammonia levels and bacterial levels low and prevent hepatic encephalopathy, which is loss of brain function due to a buildup of toxins. Neomycin B binds to a specific protein in the bacterial ribosome and interferes with bacterial protein synthesis, which leads to destruction of the bacterium. In addition, neomycin B is known to bind to RNA as well as triple-strand-DNA. The exact location of binding in the latter case is not known and is subject to ongoing research in multiple groups. The effectiveness of binding (matched molecular “handshake” or “key-lock” match) is dependent on neomycin’s solution conformation. Even if new chemical structure is added to neomycin (“key chain”), neomycin’s structure (“key”) must remain unaltered to fit the binding site (“lock”). The objective of this project was to characterize the solution geometry of neomycin B and an EDTA-derivative thereof. To our knowledge, neomycin has not been fully characterized in recent years. Quantitative information about its conformation in solution and the effects of attached substituents on the structure guides scientists in deciphering neomycin’s mode of action. In the present work, complete conformational analysis was accomplished by nuclear magnetic resonance (NMR) spectroscopy and molecular dynamics (MD) simulations. We assigned all 1H-, 13C, and 15N-resonances unambiguously, confirmed by short- and long-distance correlations. Quantitative coupling constants and qualitative 1H-1H-distances were extracted from J-resolved HMBC and NOE experiments. The compounds 2-(hydroxymethyl)-tetrahydrofuran and D-ribose were used as model compounds before analyzing neomycin and its EDTA-derivative. MD simulations were carried out in AMBER 14 with the GLYCAM06 force field. Preliminary data indicated that experimental and computational data agree well

    Conformational Analysis of Neomycin B and Its Derivative

    No full text
    Neomycin B is an aminoglycoside antibiotic, topically used to prevent and treat infections. When ingested, Neomycin cannot be absorbed by the intestine and therefore can be prescribed during liver failure or before GI surgery to keep ammonia levels and bacterial levels low and prevent hepatic encephalopathy, which is loss of brain function due to a buildup of toxins. Neomycin B binds to a specific protein in the bacterial ribosome and interferes with bacterial protein synthesis, which leads to destruction of the bacterium. In addition, neomycin B is known to bind to RNA as well as triple-strand-DNA. The exact location of binding in the latter case is not known and is subject to ongoing research in multiple groups. The effectiveness of binding (matched molecular “handshake” or “key-lock” match) is dependent on neomycin’s solution conformation. Even if new chemical structure is added to neomycin (“key chain”), neomycin’s structure (“key”) must remain unaltered to fit the binding site (“lock”). The objective of this project was to characterize the solution geometry of neomycin B and an EDTA-derivative thereof. To our knowledge, neomycin has not been fully characterized in recent years. Quantitative information about its conformation in solution and the effects of attached substituents on the structure guides scientists in deciphering neomycin’s mode of action. In the present work, complete conformational analysis was accomplished by nuclear magnetic resonance (NMR) spectroscopy and molecular dynamics (MD) simulations. We assigned all 1H-, 13C, and 15N-resonances unambiguously, confirmed by short- and long-distance correlations. Quantitative coupling constants and qualitative 1H-1H-distances were extracted from J-resolved HMBC and NOE experiments. The compounds 2-(hydroxymethyl)-tetrahydrofuran and D-ribose were used as model compounds before analyzing neomycin and its EDTA-derivative. MD simulations were carried out in AMBER 14 with the GLYCAM06 force field. Preliminary data indicated that experimental and computational data agree well

    Chemoenzymatic Synthesis of Sialosides Containing 7‑N- or 7,9-Di‑N‑acetyl Sialic Acid as Stable O‑Acetyl Analogues for Probing Sialic Acid-Binding Proteins

    No full text
    A novel chemoenzymatic synthon strategy has been developed to construct a comprehensive library of α2-3- and α2-6-linked sialosides containing 7-N- or 7,9-di-N-acetyl sialic acid, the stable analogue of naturally occurring 7-O-acetyl- or 7,9-di-O-acetyl-sialic acid. Diazido and triazido-mannose derivatives that were readily synthesized chemically from inexpensive galactose were shown to be effective chemoenzymatic synthons. Together with bacterial sialoside biosynthetic enzymes with remarkable substrate promiscuity, they were successfully used in one-pot multienzyme (OPME) sialylation systems for highly efficient synthesis of sialosides containing multiple azido groups. Conversion of the azido groups to N-acetyl groups generated the desired sialosides. The hydrophobic and UV-detectable benzyloxycarbonyl (Cbz) group introduced in the synthetic acceptors of sialyltransferases was used as a removable protecting group for the propylamine aglycon of the target sialosides. The resulting N-acetyl sialosides were novel stable probes for sialic acid-binding proteins such as plant lectin MAL II, which bond strongly to sialyl T antigens with or without an N-acetyl at C7 or at both C7 and C9 in the sialic acid
    corecore